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Abstract
Research Summary: We investigate how worker

mobility influences the adoption of a new technology

using state-level changes to the enforceability of non-

compete agreements as an exogenous shock to worker

mobility. Using data on over 153,000 establishments

from 2010 and 2018, we find that changes that facilitate

worker movements are associated with a significant

decline in the likelihood of adoption of machine learn-

ing. Moreover, we find that the magnitude of decline

depends upon the size of the establishment, the extent

of predictive analytics adoption in its industry, and the

number of large establishments in the same industry-

location. These results are consistent with the view that

increases in outward worker mobility increase costs for

adoption of a new technology that involves significant

downstream investments in the early years of its

diffusion.
Managerial Summary: Successful business adoption

of new technologies such as machine learning requires

skilled workers with experience in implementing those

technologies. In the early years of technology diffusion

workers in early adopting businesses typically acquire

these skills through on-the-job learning that is paid for

by the adopter. So, if such early adopters face an

increased risk of those skilled workers quitting, then

their incentives to adopt the technology decrease. We

examine this possibility using changes in noncompete
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enforceability as a proxy for changes in worker mobil-

ity and find that the likelihood of adopting machine

learning decreases as the risk of worker mobility

increases, particularly for larger establishments, estab-

lishments in industries where adoption may be more

beneficial and in locations with many large competing

establishments.
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business process innovation, human capital, machine learning,
noncompete agreements, worker mobility

1 | INTRODUCTION

Recent research has highlighted the increasing diffusion of machine learning (ML) technologies
among firms (Goldfarb et al., 2023, 2020; Zolas et al., 2020). This has sparked a growth in
research on ML (Felten et al., 2021); especially, an interest in understanding how the value of
such technologies is influenced by firm-level choices and the availability of firm-level comple-
ments (Bughin et al., 2019; Cao & Iansiti, 2021; Raj & Seamans, 2019). One topic of particular
interest has been the link between the value of ML adoption and human capital (Allen &
Choudhury, 2022; Brynjolfsson, Jin, & McElheran, 2021; Choudhury et al., 2020; McElheran
et al., 2023).

Human capital investments in ML, and more broadly in many new information technolo-
gies, have two features with implications both for the costs of investments and for worker
mobility. First, a large part of these human capital investments is vintage-specific (Barth
et al., 2023; Chari & Hopenhayn, 1991; Choudhury et al., 2020) and is developed through on-
the-job learning by workers. Hence, the value to firms from adopting the new technology
depends in part on the availability of workers with the associated vintage-specific human capi-
tal (“VSHC”) (Chari & Hopenhayn, 1991; Choudhury et al., 2020). Second, like prior vintages of
business information technology (IT), adopting firms need to make large investments in com-
plementary business process innovation (“BPI”) (Bresnahan et al., 2002; Brynjolfsson
et al., 2019; Brynjolfsson, Jin, & McElheran, 2021; Tambe, 2014). By their very nature, such
innovations tend to be domain-specific and involve extensive on-the-job learning that is typi-
cally paid for by adopting firms.

These features of human capital investments associated with adoption of technologies such
as ML create risks for firms that are considering adopting them. In particular, investments in
adoption efforts enable workers involved in those efforts to gain human capital through on-
the-job learning that is valuable to other firms in the industry, thus increasing the risk of out-
ward worker mobility. In this regard, recent work has found that the risk of workers leaving
the firm with valuable knowledge can depress incentives for firms to make investments that
give rise to workers developing such capital (Agarwal et al., 2009; Conti, 2014; Kang &
Lee, 2022; Starr, 2019). Thus, these studies would suggest that increased worker mobility may
reduce the incentives to adopt new technologies that involve costly investments and require on-
the-job learning. This difficulty is likely to be more severe for early adopters of new technologies
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such as ML when few experienced workers are available. To our knowledge, however, no stud-
ies have investigated this potential investment-dampening risk of mobility on technology
adoption.

In this study, we develop a parsimonious model of adoption that incorporates these key fea-
tures of technologies such as ML. Using this model, we predict that increasing mobility is likely
to dissuade adoption, particularly for larger establishments that likely benefit from economies
of scale, in industries where benefits to adoption are likely higher, and in larger locations where
workers likely have lower costs to move.

Empirically, we focus on adoption of ML incorporated in enterprise business analytics soft-
ware and measure its adoption in 2018 based on data in the Aberdeen Computer Intelligence
(CI) database from over 150,000 establishments with 50 or more employees. Rather than study
the movements of workers directly, we use changes in state-level enforceability of noncompete
agreements (NCAs) as a plausibly exogenous source of variation in worker mobility (Ewens &
Marx, 2018; Marx et al., 2009). We then use a two-period long differences model to study how
state-level changes in the strength of NCA enforceability between 2010 and 2018 influence the
adoption of ML within establishments over the same period. Importantly, since ML adoption
was not widespread by 2018, our analyses focus on short-run effects when the potential benefits
of inward mobility to adopters may be small relative to the costs of outward mobility.

In line with our predictions, we find that increased worker mobility, as measured by a loos-
ening of enforceability of NCAs, is associated with a 0.6 percentage point decline in the likeli-
hood of ML adoption by establishments in our sample. Given an average adoption rate of 9.7%
in 2018, this translates to a 6.2% decline in the likelihood of adoption on average. Our results
are stronger among larger establishments and in industries that have been lead users of predic-
tion technology, both of which are environments in which the benefits of ML adoption are
likely to be high and so where establishments will be more affected by worker mobility. We also
find that the effects of NCAs on technology adoption are greater in large urban areas, especially
when the focal establishment is in a location with a greater number of large establishments in
its own industry, consistent with NCAs deterring mobility to competitors.

Together, our theoretical framework and empirical results shed new light on an under-
studied effect of worker mobility on adoption of ML in the short run. We suggest that worker
mobility influences ML adoption by affecting the costs of VSHC and complementary BPI. These
costs characterize a range of present and past business IT, and so have implications for the dif-
fusion of a broad range of technologies beyond ML. We add to recent studies of the relationship
between information technologies and human capital at the firm level (e.g., Bresnahan
et al., 2002; Nagle, 2018), particularly those related to ML (Alekseeva et al., 2020; Allen &
Choudhury, 2022; Rock, 2021).

We contribute to research on the causes and implications of worker mobility. While worker
mobility has been understood to shape product innovation (e.g., Almeida & Kogut, 1999;
Conti, 2014; Singh & Agrawal, 2011), how it shapes the benefits and costs of BPI, especially
innovation that accompanies adoption of software technologies, is only now beginning to be
appreciated (Tambe, 2014; Tambe & Hitt, 2014; Wu et al., 2018). In this regard, while the focus
has largely been on inward mobility, our study highlights the role of outward mobility. This
focus gives rise to some distinct implications and relates our study to broader work on mobility
and competition. Earlier work has suggested that increased mobility can erode a firm's first-
mover advantages from technological leadership (Agarwal & Gort, 2001) through faster imita-
tive entry. Our research highlights an additional implication of mobility: that it can dissuade

CHEN ET AL. 3

 10970266, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

j.3595 by Stanford U
niversity, W

iley O
nline L

ibrary on [06/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



early movers from making the investments that give rise to their technological leadership, in
turn potentially slowing down such entry.

Finally, we contribute to a small but growing literature that on how NCA enforceability
affect firm outcomes, such as investment in R&D (Conti, 2014), physical capital (Garmaise,
2011; Jeffers, 2024), and worker training (Starr, 2019). Our findings also have implications for
firm choices regarding the use of NCAs. Among others, they suggest (indirectly) that large,
early adopters in lead-user industries may find it more beneficial to adopt NCAs for their
workers.

2 | THEORETICAL FRAMEWORK

We motivate our hypotheses using a stylized model of adoption. Although our exposition
focuses on ML for the sake of simplicity and its match to our empirical context, the key features
modeled here are found in many other new technologies, making the model broadly applicable
beyond ML adoption. We first characterize the human capital investments required to adopt
ML, and then discuss of the role of worker mobility before turning to the model.

2.1 | ML and human capital investments

Our focus in this study is on downstream industries and firms, rather than on digital firms for
which ML is central to the product or service provided. Like earlier generations of IT, downstream
firms adopting ML are likely to adopt packaged software solutions and then adapt such solutions to
firm needs (Bresnahan & Greenstein, 1996). Hence, we focus on the adoption of ML that has been
incorporated into enterprise application software, specifically business analytics software, which
facilitates organizational decision-making by identifying patterns in data (LaPlante, 2020).

Innovations in business IT such as ML have two distinguishing features. First, they involve
both technological innovation and a process of innovation in downstream application sectors to
develop new uses for existing technologies. In this vein, a vibrant literature has documented the
complementary business adaptations necessary to adopt and obtain value from enterprise IT
(Bresnahan et al., 2002; Bresnahan & Greenstein, 1996; Brynjolfsson, Rock, & Syverson, 2021),
including the creation of new business processes, management practices, organizational struc-
tures, and investments in new human capital. These often take time and involve a substantial
period of foregone productivity during which firm resources are committed to such adaptations
(Brynjolfsson, Rock, & Syverson, 2021).

The second distinguishing feature, relevant for workers, is that the VSHC to implement
such technologies cannot be easily acquired through academic or technical training and will
typically need to be acquired on the job. Relatedly, for reasons noted above, learning at a
“purely technological level” (Rosenberg, 1963) is less important than application-specific down-
stream innovation (Bresnahan, 2019). While workers in adopting firms may accumulate human
capital related to a new technology, such capital will not be easily translated to new contexts,
including to subsequent vintages of the technology, without again undergoing a similar process
of innovation that is specific to a new downstream application sector, thus inducing a degree
of industry- and vintage-specificity in worker human capital (Chari & Hopenhayn, 1991;
Choudhury et al., 2020). Importantly, the vintage-specificity implies that there will be few
workers with the relevant on-the-job experience during the early stages of technology adoption
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(Chari & Hopenhayn, 1991), while industry-specificity means that sharing of technical advances
through cross-industry mobility is likely to play a secondary role (Bresnahan, 2019).

Given the worker accumulation of VSHC and industry-specific human capital through on-
the-job learning, when workers of the adopting firm move to new employers, particularly in the
same sector, they can apply their experiences to those firms. While those destination firms ben-
efit from the movement of these workers as highlighted in past studies (e.g., Marx et al., 2009),
the possibility of employee movements out of their original firm will increase the original
adopting firm's costs. Moreover, ML as a technology has yet to see widespread adoption in
firms. Hence, adopters in this setting will typically be lead users who must make complemen-
tary investments in workers to deploy ML successfully and will face difficulty in acquiring
skilled workers themselves. Thus, the role of mobility costs is likely to be particularly salient to
such firms, at least in the short run when there are few trained workers. The costs of such
departures will be particularly high when it is difficult to replace and retrain workers—for
example, when departures involve team leaders who have worked on multiple aspects of the
project and can create linkages across the project team (Davenport, 2000).

2.2 | Model setup

Having motivated how worker mobility can influence the costs of ML adoption, we turn to the
formal model. Our model simplifies aspects of the adoption decision to focus on the key issues
at stake in our study. While our model incorporates some important factors that have been
emphasized in shaping adoption of new technology, such as firm and establishment size and
industry as well as location characteristics (e.g., Forman et al., 2005; Griliches, 1957; Hannan &
McDowell, 1984), it excludes others, such as the roles of network effects and competition
(Karshenas & Stoneman, 1993; Kretschmer et al., 2012). Further, the model does not explicitly
incorporate how the benefits and costs of adopting new IT such as ML evolve within firms over
time (Brynjolfsson et al., 2019; Brynjolfsson, Rock, & Syverson, 2021). Rather, our model parsi-
moniously highlights the key assumptions necessary for mobility to influence ML adoption and
how these assumptions interact with location and firm characteristics.

Consider the following model of a decision to adopt ML technology within a firm establish-
ment's production processes1:

bq−
m
θ

1− tð Þ≥F ð1Þ

where F ≥ 0 is some fixed cost of adopting ML, m > 0 is the cost associated with expected
worker mobility out of the firm,2 θ > 0 is a scaling parameter that captures factors that influ-
ence the costs of mobility and how they decline over time, and b is a parameter that influences
the relationship between size and the benefits to adoption. q ≥ 0 is size (e.g., establishment out-
put), and t is time, assumed to be continuous and between 0 and 1.

1The transition to ML-assisted production occurs at the production system level (Agrawal et al., 2021; Bresnahan, 2020).
However, because it is difficult to observe underlying production systems within firms and because firms often include
many production systems, we follow recent work and focus on the adoption decision at the establishment (or plant)
level (Brynjolfsson & McElheran, 2016; Goldfarb et al., 2020).
2Note that we are agnostic about net mobility, that is, whether outward mobility is higher or lower than inward
mobility. We only require that the net cost of outward mobility be positive (i.e., m > 0).
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The first term bqð Þ is the net benefit of adopting ML, which is assumed to be increasing in
size. There are several reasons for this assumption. Prior literature has shown that large estab-
lishments are more likely to have related technological complements and more mature pro-
cesses that will increase the value of adopting enterprise software systems (Bresnahan &
Greenstein, 1996; Brynjolfsson & McElheran, 2016). In the case of ML, large establishments
may also have data assets that give them a scale advantage (Farboodi et al., 2019). Recent work
finds that artificial intelligence facilitates scale advantages for the largest and most productive
firms (Babina et al., 2024). Also, if process innovation through ML reduces unit costs, net bene-
fits will be proportional to firm output (Klepper, 1996). Moreover, BPI that is embedded within
complex business processes (associated with large establishments) may be more difficult for
competitors to replicate (Mata et al., 1995), thus increasing payoffs to large establishments.

While the benefits to using ML may be increasing in scale, costs may rise as well. ML adop-
tion in large establishments may require significant adjustment costs to integrate legacy systems
(Bresnahan & Greenstein, 1996). Further, as noted above, adoption of ML will require integra-
tion with existing business processes. These adjustments will involve costly training of workers,
which prior work suggests may be particularly costly in large firms (McElheran, 2015).

Although both benefits and costs are likely to increase with size, recent productivity studies
have generally been supportive of the assumption that the net benefits of IT investments are
increasing in size. Using firm-level data, Tambe and Hitt (2012) show that the returns to IT
are smaller in midsize firms than those in the Fortune 500; however, they appear more slowly
in large firms. More recently, Tambe et al. (2019) measure the intangible capital value of the
complementary organizational adjustments and training described above. They find that the
quantity of this digital capital is greatest in the highest decile by firm market value, suggesting
that these investments are most highly valued in the largest firms.

The parameter b denotes the extent of net benefits that the technology offers for a given firm
size. This may vary across industries. For instance, the net benefits of ML may be greater in
contexts with digital outputs and so can be scaled at a low marginal cost. Thus, the benefits of
scale for ML will be particularly large for firms in digital industries (Farboodi et al., 2019). Even
for products and processes that are available or delivered physically, ML will be valuable when
involved in processes in which the outcomes of ML prediction can be applied with little
increase in marginal costs. For example, the benefits of a recommendation engine can be
applied across many physical goods with little incremental cost (Bresnahan, 2020).

Beyond scalability, recent work has characterized settings where it is more difficult to apply
ML to existing processes. For example, it may be more difficult to apply ML in settings where
the costs of a prediction error are particularly high (Bresnahan, 2020). Further, interdependence
of production processes may influence the costs of the organizational adjustments necessary for
deploying ML (Agrawal et al., 2021; Bresnahan, 2020). These differences in the characteristics
of the product or process are likely to translate to differences at the broader industry level.3

Indeed, at the industry level, it is a well-known fact that adoption of new technologies often
varies significantly across industries, as do the productivity benefits of technology adoption
(e.g., Stiroh, 2002).

The sizes of b, q, and F provide motivation for why there may be adopters of ML even early
in the diffusion of ML when (as we will detail below) mobility costs are high. For example, the

3We could directly hypothesize about the underlying product and process characteristics rather than about industries.
However, in addition to limited data availability on the underlying characteristics, it is difficult to ex ante describe and
specify the underlying characteristics of processes that give rise to the issues we describe.
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early diffusion of ML technologies in marketing and consumer-facing applications has been
argued to be an example of capital deepening of existing investments in web and mobile tech-
nologies (Bresnahan, 2020). In the context of our model, a large firm (high q) in a high
b industry may find it optimal to adopt ML even when the costs are high.

The second term in Equation (1), m
θ 1− tð Þ� �

, denotes the costs to acquire and retain the
human capital necessary for implementing ML. Given the discussion above, we model these as
a function of the costs of potential outward mobility and assume they will be positive, reducing
the net benefits of ML adoption. In keeping with the vintage-specific nature of the human capi-
tal investments required to adopt ML (Chari & Hopenhayn, 1991; Choudhury et al., 2020), we
posit that the cost of replacing departing workers declines over time as the number of workers
with the requisite experience increases. Indeed, it is possible that after the technology diffuses
further and trained workers are more widely available, mobility increases the net benefits of
ML adoption, by lowering the costs of acquiring new skills (this can be reflected in our model
by multiplying t by an additional parameter, ω> 0; see Online Appendix D).

The parameter θ allows for potential differences across regions in labor market thickness
that can affect the ease with which local employer-worker matches can be made. In large
regions, thicker labor markets mean that it will be easier to find workers with the requisite
skills elsewhere, and the costs of replacing departing workers will be lower (Forman
et al., 2005, 2008). In the model, this is reflected in such regions having a higher θ.

2.3 | Hypotheses

In our model, the time at which a firm adopts ML is determined by when the benefits of adop-
tion exceed the costs. Formally, based on Equation (1), this is given by:

t≥t�=1+
θ

m
F−bqð Þ ð2Þ

To proceed, we make a simplifying assumption that all firms eventually adopt ML (i.e., at
t = 1). This is merely to simplify the exposition here and can be relaxed without changing the
inferences (see Online Appendix D). Then, from Equation (1), at t = 1, we must have bq>F or,
equivalently, F−bq<0 for all q. We further assume that for all q, bq<F+ m

θ . Intuitively, this
means that when t= 0, there are no firms that adopt instantaneously.

Taking the derivative of t* with respect to m, we get ∂t�
∂m=− θ F−bqð Þ

m2 >0 since F−bq<0. Thus,
as worker mobility increases, adoption is delayed. Intuitively, as noted, this happens because at
any given time, keeping other things constant, increasing mobility decreases the expected bene-
fit from adopting. We state this as our first baseline hypothesis and then explore how this base-
line prediction varies with size, industry, and location of the establishment:

Hypothesis 1. Increasing worker mobility will increase the time to ML adoption.

2.3.1 | Establishment size (q)

From Equation (2), ∂t�
∂q =− bθ

m<0. Thus, large establishments (i.e., those with higher q) are likely
to adopt ML earlier. This follows straightforwardly from the assumption that benefits are
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increasing in size. However, the characteristics that make the benefits of ML adoption more
valuable for larger establishments also make the costs of mobility higher.

To see this, consider the cross-partial derivative ∂2t�
∂m∂q=

bθ
m2>0. Thus, increases in mobility

reduce the adoption time to a greater extent for larger establishments. This arises because larger
establishments are at greater risk of adopting ML, and so changes in mobility costs will influ-
ence their behavior more on the margin. We state this as the second hypothesis:

Hypothesis 2. Increasing worker mobility will increase the time to ML adoption
more in larger establishments than in smaller establishments.

2.3.2 | Expected benefits of adoption (b)

The relationship between the scale of output q and the benefits of adoption may vary across
contexts, depending upon the characteristics of the product or process. These ideas are
expressed formally in our model, where ∂t�

∂b =− qθ
m<0 so that industries where the benefits

are higher (i.e., those with higher b) tend to adopt ML earlier. The effects of worker mobility
will be magnified in such industries. Formally, ∂2t�

∂m∂b=
qθ
m2>0. To see the underlying intuition,

consider an industry where the benefits to ML adoption are so low that few firms find it optimal
to adopt; changing worker mobility in that industry will yield almost no effect on adoption. In
contrast, mobility changes will have a larger impact in an industry where many firms find it
optimal to adopt. In sum:

Hypothesis 3. Increasing worker mobility will increase the time to ML adoption
more in industries where benefits of adoption are likely to be higher.

2.3.3 | Location size (θ)

As noted earlier, in large regions the costs of hiring workers who have obtained the requisite
skills will be lower. In the model, this is reflected in such regions having a higher θ. Based on
this, the direct effect (benefit) of location size can be seen by considering the partial derivative
∂t�
∂θ =

F−bqð Þ
m <0 since F−bq<0.

However, the effects of worker mobility will be magnified in larger locations. To see this for-
mally, note that ∂2t�

∂m∂θ =− F−bqð Þ
m2 >0 since F−bq<0. Intuitively, this arises because in such

regions, the larger number of workers and firms will make matching between worker skills and
employer needs easier, thus reducing the costs to firms hiring workers from elsewhere. As a
result, there are more outside options for workers who have accumulated ML-related human
capital, depressing incentives to make investments in ML that will train workers. Thus, the
costs associated with mobility are higher in large regions (i.e., those with higher θ).4

Hypothesis 4. Increasing worker mobility will increase the time to ML adoption
more in larger locations than in smaller locations.

4In our empirical analysis we will probe this hypothesis further. The relevant labor market for acquiring workers may
be jobs that exist within the same industry. Therefore, we will investigate whether it is increases in industry size, rather
than location size per se, that most directly influence the relationship between mobility and adoption.
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3 | MOBILITY AND NCAs

The prior section established how changes in worker mobility can shape adoption of
ML. However, measuring the mobility of workers engaged in BPI and estimating a causal rela-
tionship between their movement and adoption is difficult as the benefits and costs of local
worker mobility will be correlated with other local factors that influence the benefits of ML
adoption. As a result, determining the impact of mobility on ML adoption requires an exoge-
nous change to mobility across locations. In this study, we use plausibly exogenous state-level
changes in the enforceability of NCAs to capture changes in the ease of worker mobility on ML
adoption.

NCAs are agreements between employers and employees that restrict employees from join-
ing or starting a competing firm for some time after they leave their employer. These agree-
ments, where enforceable, intend to protect investments made by a firm that may spill out to its
competitors through worker mobility, and thus encourage investments by firms. The enforce-
ability of these agreements in the United States varies across states; while most states allow
“reasonable” restrictions, they are mostly or completely unenforceable in three states (CA, ND,
and OK). Importantly, the enforceability of these agreements has changed over time in many
states, either through legislative action or through court judgments.

We use changes in NCA enforceability as a measure of the state-level changes in the costs
and benefits of worker mobility for several reasons. First, because they are shaped by legal and
legislative changes, changes in the strength of NCAs are not likely to be correlated with IT
investment. Second, NCAs are important restrictions that cover a significant proportion of the
U.S. workforce. Starr (2019), using a survey of 11,000 workers, found that 38% of workers had
signed an NCA and that 19% were subject to an NCA by the time of the survey. Moreover,
workers in knowledge-intensive positions are more likely to be subject to NCAs, such as
workers in architecture, computers, and engineering (Starr, 2019); CEOs (Garmaise, 2011) and
inventors (Marx et al., 2009). Third, the enforceability of NCAs is a matter of state law (rather
than federal law), which allows us to compare changes in adoption behavior in establishments
that are in states that altered NCA enforceability with the corresponding changes among estab-
lishments in states that did not alter NCA enforceability.

Most importantly, studies across a range of settings have provided strong and compelling
evidence that changes in the enforceability of NCAs influence worker mobility. Using
U.S. patent data, Marx et al. (2009) show that strengthening the enforceability of NCAs reduces
inventor mobility, particularly among those with firm-specific skills or in narrow technology
fields. Balasubramanian et al. (2022), who looked at a recent ban on NCAs for
technology workers in Hawaii, show that banning NCAs led to an 11% increase in mobility
(and a 4% increase in new-hire wages) among technology workers (defined by industry) relative
to other workers. Garmaise (2011) and Jeffers (2024) find a similar mobility-hindering effect
among executives and knowledge workers, respectively. The latter study uses a similar set of
legal changes as we adopt in this study and finds that following an increase in NCA enforceabil-
ity, the total departure rate of employees drops by around 9%. Hence, we use changes in the
legal enforceability of NCAs to proxy for changes in the ease of worker mobility. The next
section provides further details on the specific changes considered.

That said, it is important to keep in mind that there are other links in the chain linking
enforceability to mobility, including the strategic decision to use (and agree to) NCAs. Those
links likely mute the relationship between enforceability and mobility by introducing noise. For
instance, the propensity to use NCAs is higher among larger firms and in lead-user industries
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such as information; finance; professional, scientific, and technical services; and manufacturing
(Starr et al., 2021). Such variations in NCA use may interact with changes in NCA enforceability
to influence mobility. Moreover, prior research has shown that in addition to increasing mobil-
ity, decreasing NCA enforceability increases wages, although this effect is neither uniform nor
theoretically unambiguous (e.g., Balasubramanian et al., 2022). However, such a wage increase
is unlikely to occur without any accompanying increase in worker mobility, and thus NCAs are
unlikely to affect ML adoption through wage increases alone.

4 | DATA

Our primary source of data is the Aberdeen CI Technology Database. It contains information
on establishment- and firm-level characteristics such as number of employees, installations of
IT software and hardware, and industry classification, among others. As one of the most com-
prehensive sources of micro-level IT investment, this dataset has been used to study the adop-
tion and implications of IT investments (e.g., Bloom et al., 2012; Bresnahan et al., 2002;
Bresnahan & Greenstein, 1996; Forman et al., 2005, 2012; Nagle, 2018, 2019).5

Historically, the CI data were collected by interview teams that surveyed establishments.
However, beginning in 2017 the data collection became based upon evidence of technology
usage and topical queries recorded online. One source indicates that data are captured from
over 1000 websites that host content concerning technologies, including job boards, forums,
tutorials, and educational sites (Levy, 2019). For example, if a user at a company lists experience
with a technology on her resume, or if a user is active on a user forum associated with a tech-
nology, this is considered evidence of usage of the technology at the organization. While the CI
database includes information on evidence of both current and expected use of technologies, we
use only evidence on current usage. In this way, the approach is similar to recent methods to
detect IT investment and use based on online employee resumes and job advertisements
(Goldfarb et al., 2023; Tambe et al., 2019; Tambe & Hitt, 2014).

We want to understand how changes in the ease of mobility for workers, as proxied by
changes to state-level enforceability of NCAs, influence the diffusion of ML technology among
businesses. Thus, we require data on adoption of ML over time. Our choice of sample period is
shaped by several factors. First, since NCA changes occur over a period of years, we must use a
period that allows sufficient time for these changes to occur and for them to influence adoption.
Similarly, our sample must end sufficiently late so that we can observe adoption of ML: for
example, advanced data analytics enabled by ML entered the market starting only around 2015
(see, e.g., Sallam et al., 2017). Third, as noted, Aberdeen changed its data collection strategy
recently, making the intervening years difficult to compare. Given these constraints, we exam-
ine adoption over two distinct years, 2010 and 2018, studying the adoption decisions in 2018
from a base of zero (i.e., no adoption in 2010). Similarly, in our empirical models, we use only
1 year (2010) to control for establishment characteristics. This mitigates the effects that changes
in data collection strategy might have on our results.

5The database was previously known as the Harte Hanks Market Intelligence CI Technology database. It has since
become known as the Aberdeen CI Technology Data Set and, more recently, the Aberdeen Technology Data Cloud. We
retain the CI database label because it was used during part of our sample period and because it is the name that has
been referenced in prior research projects.
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Our research design requires establishments to appear in both 2010 and 2018 in the data.
We identify 1,046,523 such establishments. We exclude government, military, nonprofit, and
agriculture organizations (�178,000 establishments) because the relationship between ML
adoption and worker mobility for these organizations is likely to be different. Prior-related
research using establishment-level CI data have focused on larger establishments because of
low rates of adoption of frontier IT among small establishments and also because of potential
measurement error (e.g., Forman et al., 2005, 2008, 2012). Following that research, we exclude
small establishments with fewer than 50 employees (�681,000 establishments) because of low
adoption rates and the risk that we cannot accurately observe ML adoption given Aberdeen's
recent data collection methodology that relies on the use of online signals to infer technology
use. However, as we note later, our results are robust to including them. The final baseline sam-
ple contains 153,090 establishments. Online Appendix Table B1 provides details of the sample
construction. Further, in Online Appendix Table B2, we compare our data to U.S. Census
County Business Patterns data and find it similar in terms of industry and geography, though
like prior versions of the database, the CI data seem to have slightly oversampled large estab-
lishments (e.g., Forman et al., 2002).

4.1 | Dependent variable: ML analytic software adoption

Our interest is in understanding the implications of worker mobility through the complemen-
tary innovation required to deploy a new technology. Thus, to isolate the implications of this
innovation from other types of innovation that could occur when developing and implementing
new software (e.g., development of algorithms), we focus our analysis on the adoption of pack-
aged software that incorporates ML technology.

Specifically, we measure ML adoption based on whether an establishment adopts enterprise
data analytics software that incorporates ML technology. Analytics software incorporating ML
functionality enables new applications by facilitating predictive analysis (Agrawal et al., 2018,
2019) and hence is different from traditional data analytics tools that focus on descriptive analysis.
To assess whether a software incorporates ML, we examined the functionality of that software
and identified 31 packages that incorporate ML technology. We create a dummy variable for ML
adoption at the establishment level that is equal to 1 if the establishment has adopted one of these
packages and 0 otherwise. The overall ML adoption rate in our sample is 9.7% in 2018. Details of
our coding approach and the list of 31 packages are provided in Online Appendix A.

4.2 | Key independent variable: Changes in noncompete
enforceability

We identified 14 states that experienced a significant change in NCA enforceability based on
the following four sources: (1) Ewens and Marx (2018), which provides a list of significant state-
level changes used in their study period ending in 2014; (2) Beck Reed Riden LLP (2019), which
provides a state-by-state snapshot of key aspects of noncompete enforceability, such as whether
NCAs are permitted, whether there are any exemptions, and so forth; (3) Malsberger et al.
(2017), which contains the most comprehensive treatment available of NCA enforceability; and
(4) Jeffers (2024), which provides a list of nine state Supreme Court decisions between 2009
and 2013 that changed the enforceability of NCAs.

CHEN ET AL. 11
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As we assume that changes would take some time to show any effects on technology adop-
tion, we focus on significant changes during the period from 2010 to 2017, a window that ends
1 year prior to the end of our analysis sample. We reviewed each of the four sources indepen-
dently to identify relevant state-level changes. We classified each potential change into two cat-
egories, those that favored employers and those that favored workers (details of each change
are provided in the Online Appendix). We then compared across sources to confirm the direc-
tion and significance of each of the identified changes. In a few cases where there appeared to
be contradictions among sources, we relied on Malsberger et al. (2017), given its comprehensive
treatment. The state-level changes developed using this process are shown in Table 1. If a state
had changes in both directions or was inconsistent in some other way, we treated it as no
change in the baseline estimation and performed robustness checks.

4.3 | Other controls

4.3.1 | Firm and establishment characteristics

The CI data include a range of information about the focal establishment and the firm that they
belong to. Establishment size is measured using the number of employees; firm size is measured
using the total number of establishments in the firm. Because of changes in measurement
methods in these variables and since changes in these variables over time can be affected by
our dependent variable (i.e., they would be “bad controls” per Cinelli et al., 2020), we use the

TABLE 1 Changes in NCA enforceability.

State Case/code Effective date/decision date

Changes favoring employers (coded as −1)

Arkansas Ark. Code 4-75-101 7/22/2015

Colorado Lucht's Concrete Pumping, Inc. v. Horner 5/31/2011

Georgia Restrictive Covenants Act 5/1/2011

Texas Marsh v. Cook 12/16/2011

Virginia Assurance Data Inc. v. Malyevac 9/12/2013

Wisconsin Runzheimer International v. Friedlen 4/30/2015

Changes favoring workers (coded as 1)

Hawaii Haw. Rev. Stat. Sec. 480-4(d) 7/1/2015

Kentucky Creech v. Brown 6/9/2014

Montana Wrigg v. Junkermier, Clark, Campanella, Stevens 11/22/2011

New Hampshire N.H. Rev. Stat. Ann. Sec. 275-70 7/12/2012, 7/28/2014

New York Brown & Brown v. Johnson 6/11/2015

Oregon ORS 653.295 1/1/2016

Pennsylvania Socko v. Mid-Atlantic Systems 11/18/2015

South Carolina Poynter v. Century Builders 5/24/2010

Utah Utah Codes 34-51-101 to 34-51-301 5/10/2016

12 CHEN ET AL.
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base-year values of these characteristics in our estimation. We also control for industry-level dif-
ferences using four-digit SIC dummies.

We do not include technology controls in our baseline regressions because in the base year
of our data (2010), the CI database surveyed only 43% of establishments on their software instal-
lations (e.g., database software) that are likely to directly influence the net benefits to ML adop-
tion. However, we examined the robustness of our results to a model including controls for IT
hardware investments and IT workers, which will capture differences in the general IT intensity
of the establishment. Our results are robust to these additions.

4.3.2 | Local characteristics

We include several controls related to local characteristics. Because changes in these local fac-
tors during our sample period may influence adoption decisions and can potentially be mis-
attributed to changes in NCA enforceability, these controls are entered as differences between
2010 and 2018. To control for the intensity with which establishments in other technology-
intensive industries are collocated with the focal establishment, we collect county-level high-
tech industry employment data from the Quarterly Census of Employment and Wages and use
this to indicate whether the county ranks in the top quartile in the United States.6

We also obtain information from the 2010 and 2018 American Community Survey to control
for state-level demographic and economic factors that may affect IT adoption cost, including
the percentages of the population that are aged 15–64 years, aged over 65, Black, and female.
We include controls for college or graduate school attendance rate among adults aged 18–
24 years, the logarithm of state population, state GDP, and median household income.

We control for other state-level policies and laws that might affect worker mobility among
firms. Specifically, we control for whether the state has adopted public policy, implied contract,
and good-faith exceptions to at-will employment (Autor et al., 2006); whether the state has
adopted right-to-work laws (Starr et al., 2018); and the state top corporate income tax rate
(Seegert, 2012).

Table 2 presents the descriptive statistics across the entire set of sample establishments.
These include statistics related to adoption and establishment characteristics; additional
descriptive statistics across our sample and based on whether the state in which the establish-
ment resides experienced a change in the strength of NCA enforceability are included in
Tables B3 and B4 in the Online Appendix. All statistics in these tables use base year (2010)
values.

5 | IDENTIFICATION STRATEGY

5.1 | Estimating average NCA effects on IT adoption

Our primary specification is a two-period long-differences model and examines changes to
establishment-level adoption decisions of ML technology between 2010 and 2018. Our baseline
empirical model takes the following form:

6Specifically, we identify high-tech industries from Roberts and Wolf (2018) and compute the fraction of employment in
such industries based on the four-digit NAICS.
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ΔAdoptionisj=β0+β1ΔNCAs+β2Xisj 10ð Þ+β3ΔZisj+εisj ð3Þ

where ΔAdoptionisj=Adoptionisj 18ð Þ−Adoptionisj 10ð Þ.
7 Here, Adoptionisj tð Þ is equal to 1 if establish-

ment i in state s from industry j adopts ML at time t, and 0 otherwise. ML only became widely
available in commercial software in 2015 (Sallam et al., 2017), so Adoptionisj 10ð Þ=0:ΔNCAs

reflects the change in NCA enforceability (described below). Xisj 10ð Þ is a vector of establishment-
level controls fixed at 2010 values, as noted earlier. ΔZisj is a vector of controls for local factors
that influence the net benefits of ML adoption, entered as differences between 2010 and 2018.
Standard errors are robust and clustered by state.

Our hypotheses predict how changes in NCA enforceability and other factors influence the
time to adoption. However, we observe adoption only in 2018. Therefore, as an equivalent
approach, we test our hypotheses by examining how mobility and its interaction with establish-
ment and local factors influence adoption by 2018: when changes in these factors reduce the
likelihood of adoption by 2018, we interpret this as an increase in the time to adoption.

We focus on establishment-level adoption because, as noted, it is closer to the underlying
process or system over which ML adoption decisions will be made. Our focus on establishment-
level data is consistent with recent attempts to measure adoption of ML and analytics
(Brynjolfsson & McElheran, 2016; Goldfarb et al., 2020) as well as prior studies of enterprise
software adoption using the CI database and other sources of business data available at the
establishment level, such as U.S. Census data (e.g., Bresnahan & Greenstein, 1996; Forman
et al., 2012; McElheran, 2015).

Consistent with prior literature that has examined the implications of changes in NCA
enforceability, in our baseline model, we code changes in NCA enforceability using three levels
(e.g., Ewens & Marx, 2018; Garmaise, 2011; Jeffers, 2024). NCAs represents the changes in NCA
enforceability in state s, which is coded as 1 for a decrease (favoring employees), 0 for no
change, and −1 for an increase (favoring employers). β1 is our main coefficient of interest,
which denotes the difference between the ML adoption rate in establishments that were

TABLE 2 Descriptive statistics.

Variable Obs. Mean SD Min Max

Panel a: Summary statistics of firm variables

Machine learning adoption in 2018 153,090 0.097 0.297 0.000 1.000

Log number of site employees 153,090 4.719 0.797 3.932 10.309

Log number of sites in the enterprise 153,090 2.183 2.072 0.693 10.390

Panel b: Machine learning adoption by NCA group

NCA changes favoring employers 26,959 0.109 0.312 0.00 1.00

No change 100,658 0.096 0.295 0.00 1.00

NCA changes favoring workers 25,473 0.089 0.285 0.00 1.00

Note: Unless otherwise indicated, all values in Panel a are from 2010.

7Our estimation equation can be obtained from a fixed effects model in which adoption is a (linear) function of the level
of NCA strength, establishment-level and local factors, and establishment and industry-year fixed effects that control for
time-varying factors at the industry level such as changes in output and input prices. Importantly, the latter include the
price of the technology, which is very high initially so that there is no adoption in the first period.
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exposed to a legal change in NCA enforceability relative to those located in a place without any
NCA-related changes, after controlling for other factors. Specifically, if β1 is positive (negative),
it indicates that a loosening in NCA enforceability, which favors workers, is associated with an
increase (decrease) in the likelihood of ML adoption in 2018. While this baseline specification
assumes that the effects of enforceability increases and enforceability decreases are symmetric,
in Online Appendix B we provide results in which we allow for these effects to be asymmetric
and show that our qualitative results remain unchanged.

A key aspect of our specification is that it is a two-period difference model in which the
treated states (i.e., where NCA laws changed between 2010 and 2018) are compared only to
untreated states (i.e., those with no such changes) and not to other treated states. A common
test with a method such as ours would be a “pre-trend analysis,” which examines if the
observed effects of changes in NCA laws on ML adoption manifest before these changes occur.
Several aspects of our data preclude the estimation of pre-trends as well as estimating the impli-
cations of NCA changes on ML adoption in all years between 2010 and 2018. First, as shown in
Table 1, the majority of our states made changes to NCA enforceability during or prior to 2015,
the first year in which ML software was widely available in the marketplace (Sallam
et al., 2017). Only two states, Utah and Oregon, made changes to NCA enforceability later, in
2016. In this environment, any pre-trend test would have little power, as few establishments
would have risked adopting ML prior to the policy change. Second, as noted earlier, there was a
change in the data collection strategy in the CI database in 2017. Hence, we focus our analysis
on two-period difference models and probe robustness through other means.

This modeling approach also has implications for the use of recent innovations in the
difference-in-difference (DiD) literature (e.g., Callaway & Sant'Anna, 2021; De Chaisemartin &
D'Haultfoeuille, 2020; Goodman-Bacon, 2021). While the timing of treatments (i.e., changes in
NCA enforceability) may vary across states, in our setup this does not influence the compari-
sons made to identify the DiD parameters: the identifying variation only compares treated states
to never-treated states. Hence, we do not compare groups experiencing treatment with other
groups that will or had already experienced treatment earlier in the sample (and are not
experiencing it now) (Goodman-Bacon, 2021).

After establishing the baseline effect (Equation (1); Hypothesis 1), we examine how the
effects vary based on establishment, industry, and geography characteristics (Hypotheses 2–4).
Beyond verifying our predictions, these additional tests provide further confidence in a causal
interpretation of our results if they are consistent with the framework developed in the prior
section. In particular, if our results are influenced by unobserved heterogeneity, then the source
of unobserved heterogeneity must act in a way that is consistent with our predictions related to
how establishment size, industry, and location interact with NCA changes to shape adoption.

6 | RESULTS

6.1 | Baseline results of NCA effects on ML adoption

In Table 3, we present the baseline results, successively adding controls in each column so that
column (6) presents the estimates from the two-period difference model with the full set of con-
trols as specified in equation (1). Our specifications include an extensive set of controls, includ-
ing all of those listed in Table 2 and in Table B3 in the Online Appendix. To conserve space, we
present only a subset of control variables in our tables. The results in Table 3 show that changes
in NCA enforceability in favor of workers have a negative effect on adoption. Based on the
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baseline specification in column (6), a decrease in NCA enforceability (a change favoring
workers) is associated with a 0.6 percentage point decline (p-value .015) in the likelihood of ML
adoption, which translates into a 6.2% decrease (the adoption rate in 2018 is 9.7%). Thus, the
results support Hypothesis 1.

While these results assume that increasing and decreasing NCA enforceability have sym-
metric effects (following the literature), we tested for asymmetric effects and found that the
magnitude of the coefficients for changes favoring workers and employers are roughly equal
(Online Appendix Table B5). Hence, and given its ease of interpretation, we use the symmetric
specification for our baseline analyses and discuss asymmetric effects as robustness checks.

6.2 | Heterogeneous effects of NCA on adoption

Table 4 presents split-sample results that estimate different NCA coefficients for large establish-
ments (with more than 100 employees) versus small establishments (with 50–100 employees).
We estimate separate regressions for the two groups to allow for unrestricted effects of
covariates in differently scaled firms. Column (1) shows that NCA enforceability changes have
no economically significant effect on adoption behavior for establishments with fewer than
100 employees. In contrast, column (2) shows that the magnitude of the NCA enforceability
effect is larger for establishments with more than 100 employees; these establishments show a
0.9 percentage point decline in adoption (p-value .027) when changes in NCA enforceability
favor workers (which translates to a 7.4% decline when compared with an adoption rate of
12.1%). A test, based on seemingly unrelated regressions (Zellner, 1962), of the difference
between the estimates in columns (1) and (2) shows they are different (p-value .071).

In Table 5, we test Hypothesis 3. We proxy the industry-level net benefits to ML adoption
with the propensity to adopt predictive analytics technology. We identify industries that are
lead users of predictive analytics based on survey evidence reported in Brynjolfsson, Jin, and
McElheran (2021). We identify lead user industries as those that have average predictive

TABLE 4 Effects of NCA enforceability on ML adoption by establishment employment size.

(1) (2)
Test of
differences (SUR)

VARIABLES
50–99
employees

100+
employees Chi-square p-Value

NCA (−1,0,1) −0.002
(0.002)

−0.009
(0.004)

3.262 .071

Log number of site employees in 2010 0.008
(0.004)

0.028
(0.003)

14.890 .000

Log number of sites in the enterprise
in 2010

0.050
(0.001)

0.049
(0.001)

0.948 .330

Top quartile county high-tech
employment fraction

0.013
(0.001)

0.017
(0.002)

2.067 .151

Establishments 78,082 74,974

R2 .245 .240

Mean adoption rate in 2018 0.0745 0.1210

Note: All regressions include controls listed in column (6), Table 3. Robust standard errors clustered by state in parentheses.
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analytics adoption greater than or equal to 0.75, based on fig. 2 in that paper. As shown in
Table 5, this divides our sample of manufacturing establishments roughly in half. The advan-
tage of this measure is that it provides an industry-level measure of adoption of a closely related
technology; one disadvantage is that it is available only for manufacturing. Table 5 shows that
the effects of NCA changes on adoption are stronger in industries that are lead users of predic-
tive analysis and so is consistent with Hypothesis 3 (the p-value of the difference in coefficient
estimates between lead user industries and others is .011).

TABLE 5 Effects of NCA enforceability on ML adoption by industry predictive analytics (PA) adoption intensity.

(1) (2)
Test of
differences (SUR)

VARIABLES
Industry PA
adoption rate ≥ 0.75

Industry PA
adoption rate < 0.75 Chi-square p-Value

NCA (−1,0,1) −0.009
(0.004)

0.003
(0.003)

6.49 .0108

Log number of site employees
in 2010

0.018
(0.004)

0.016
(0.003)

0.37 .5455

Log number of sites in the
enterprise in 2010

0.056
(0.002)

0.028
(0.002)

111.68 .000

Top quartile county high-tech
employment fraction

0.011
(0.005)

0.001
(0.002)

3.51 .0611

Establishments 18,420 16,958

R2 .220 .160

Mean adoption rate in 2018 0.1102 0.0403

Note: Split on PA adoption rate based on Brynjolfsson, Jin, and McElheran (2021), fig. 2. All regressions include controls listed
for column (6) of Table 3. Robust standard errors clustered by state are in parentheses.

TABLE 6 Heterogeneous effects of NCA enforceability on ML adoption by geographical location size.

(1) (2)
Test of
differences (SUR)

VARIABLES
Sizable MSA (with
over 1 m population)

Other
locations Chi-square p-Value

NCA (−1,0,1) −0.008
(0.003)

−0.000
(0.002)

3.680 .055

Log number of site employees in
2010

0.025
(0.003)

0.013
(0.002)

15.932 .000

Log number of sites in the
enterprise in 2010

0.051
(0.001)

0.046
(0.001)

20.744 .000

Top quartile county high-tech
employment fraction

0.014
(0.002)

0.012
(0.002)

0.133 .715

Establishments 88,175 64,873

R2 .230 .254

Mean adoption rate in 2018 0.1093 0.0812

Note: All regressions include controls listed in column (6), Table 3. Robust standard errors clustered by state in parentheses.
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In Table 6, we compare the effects of changes in NCA enforceability for establishments
located in large metropolitan statistical areas (MSAs, large defined as populations over 1 million)
with establishments in other locations. Column (1) shows that a change in NCA enforceability
in favor of workers decreases the likelihood of ML adoption for establishments located in large
MSAs by 0.8 percentage points (p-value .016). This translates to a 7.1% decrease in the likeli-
hood of ML adoption by establishments in those locations. In column (2), the coefficient of
NCA enforceability changes in locations outside of a major MSA is almost 0. These estimates in
columns (1) and (2) are different from one another (p-value .055).

In our theoretical motivation, we argued that establishments in large regions will be more
sensitive to NCA changes because of easier matching between worker skills and employer needs.
This matching will be easier still when the large region includes many large establishments (rela-
tive to the case where large regions include many smaller establishments). Further, because
employer-worker matching is easiest for worker movements within the same industry, and
because NCA laws restrict worker movement within the same industry, the effects of NCA
enforceability will be strongest in locations with many large establishments in the same industry.

In Table 7, we explore this prediction further, examining heterogeneity in our effects based
on the number of large (more than 100 employees) establishments in the same four-digit SIC
code and in the same MSA. The number of large same-industry establishments may be corre-
lated with local characteristics—in particular, whether the focal establishment is in a large
MSA. Accordingly, we control for location in a large MSA in many specifications. Because we
want to separately discern the effects of multiple local characteristics—including location size
as well as the number of small and large establishments in the focal establishment's industry—
we capture their simultaneous effects by using interaction terms rather than split samples.

Columns (1) and (2) explore the effects of interacting our NCA variable with (log of) num-
ber of establishments in the same location and four-digit SIC, providing a baseline for the
effects of an increasing number of same-industry establishments. Increases in the total number
of establishments have no economically significant effects on the marginal effect of a change in
NCA enforceability, whether or not the regression specification controls for location in a large
MSA. Column (3) presents a similar specification using the number of small establishments,
and similarly shows that an increase in the number of small establishments has no impact on
the marginal effect of NCA enforceability.

Columns (4)–(6) represent the regression results that show the implications of increases in the
number of large establishments in the same industry-MSA, progressively adding controls for the
number of small establishments in the industry-MSA and a large MSA dummy (and their respec-
tive interactions with our NCA variable). These results show that increases in the number of large
establishments strengthen the effects of NCA changes on ML adoption. For example, the results in
column (6) (row: NCA × Log number of large establishments by MSA-SIC4 industry, highlighted
in bold) suggest that a 10% increase in the number of large establishments will lead to an addi-
tional 3.1% decline in the likelihood of ML adoption when there is a change in NCA enforceability
that favors workers (p-value .018). In short, the effects of NCA are stronger for establishments in
locations where there are more large establishments in the same industry-location.

6.3 | Robustness checks

We follow prior literature (e.g., Ewens & Marx, 2018; Garmaise, 2011; Jeffers, 2024) by imposing
symmetry on the effects of NCA enforceability changes on ML adoption. Our tests in Online
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Appendix Table B5 support our approach, showing that the magnitudes for changes favoring
workers and employers are roughly equal. However, for robustness, we also reestimate all the
models in Tables 4–7 in which we allow for heterogeneity in establishment size, industry IT
intensity, location size, and own industry size (Tables B6–B9). In general, the results are consis-
tent with the directional predictions of our model, though in some cases the parameters are
imprecisely estimated, and in one case the results are inconsistent with model predictions (the
coefficient estimate in Table B7 for changes favoring workers in industries with PA adoption
rate <0.75 is positive rather than negative). However, given the small number of states underly-
ing some of the coefficients, we urge caution when interpreting results from these tables.

We then probe the robustness of our results to different strategies for measuring changes in
the strength of NCA enforceability. We examine cases with some ambiguity in the direction of
change. This occurred when, for example, changes to NCA enforceability within a state could
affect workers both positively and negatively, or when there were multiple changes in a state
during our sample period. Online Appendix C describes these changes in more detail. The
results in Table B10 show that our results are robust when we reestimate our models after mak-
ing changes to our coding for the states in which there is some ambiguity.

Like many prior studies in this literature (e.g., Ewens & Marx, 2018), our baseline analyses
do not consider differences in the intensity of change in NCA enforceability. We attempted a
rough exploration based on the strength of NCA change. Table B11 presents the results of these
explorations, showing that our baseline results are directionally robust to allowing parameter
estimates for NCA changes to vary by our measure of change strength.

We now probe our identification assumptions. In Table B12, we examine the robustness of
our baseline results to including controls for IT hardware as well as the fraction of IT employees
and IT developers out of total establishment employment. Our results are robust to including
these controls. In Table B13, we run a descriptive regression of changes in NCA enforceability
on state-level features. The results appear supportive of our assumption.

As another way to assess the validity of our theoretical arguments, we explore the impact of
NCA changes on adoption of a different technology that requires lesser industry-specific down-
stream investments and so should be less influenced by changes in NCA. To do this, we explore
the effects of NCA changes on the adoption of tablets (touchscreens) within enterprises, one of
the technologies studied by Zolas et al. (2020) and one for which we have data. Adoption of tab-
lets should require less VSHC and lower industry-specific investments to be used productively
(Zolas et al., 2020) and diffused among businesses around the same time as ML. Apple launched
the first-generation iPad in 2010, so we can assume that adoption among enterprises is zero as
we do for ML. Column (1) of Table B14 in the Online Appendix shows that changes in NCA
enforceability have little effect on adoption of tablets, consistent with our expectations. We sim-
ilarly examined the implications of changes in NCA on the changes in the number of IT
workers and show in column (2) of Table B14 that changes in NCA enforceability in favor of
workers are associated with a 4.0% decline in the number of IT workers.

We conduct a separate falsification exercise by examining the robustness of our results to
randomization inference (Hess, 2017). We follow Hess (2017) and randomly assign NCA-related
treatment to a similar-sized group of states as that in our original regression and collect esti-
mates using Equation (1) from 500 replications. The two-sided p-value of the test was .022,
which suggests that it is unlikely that our observed treatment effect is due to random chance.

We explore the robustness of our results for different thresholds and samples. In Table B15,
we include all establishments (column (1)) and find that the NCA coefficient is negative and
larger in magnitude than our baseline result. In that table, we also provide a split-sample

CHEN ET AL. 21

 10970266, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

j.3595 by Stanford U
niversity, W

iley O
nline L

ibrary on [06/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



analysis by different size classes. Except for the smallest size class (which likely is the most sus-
ceptible to measurement errors), the magnitude of the effects is generally increasing in estab-
lishment size. Tables B16 and B17 show that the heterogeneous effects by establishment and
industry-location size are robust to alternative size thresholds.

In Table B18, we split the sample into manufacturing and non-manufacturing and find the
coefficients to be similar across these sectors. In Table B19, we restricted our sample to single-
establishment firms only, and the results are qualitatively similar. We also confirmed the
robustness of our baseline model to excluding one state at a time, and excluding one industry at
a time (results available upon request). Last, we retested Hypotheses 3 and 4 using interactions
rather than split samples and find qualitatively similar results (Table B20).

6.4 | Survey evidence

To shed additional light on the theoretical arguments underlying our model, we conducted a
Qualtrics survey of about 200 “key team members” (i.e., project manager, technical lead, busi-
ness lead, or a similar role) in large IT projects at for-profit companies. Of these, 80% had expe-
rience in new technologies (that companies in an industry have begun using only in the past
5 years), and another 12% were familiar with them. Broadly, we attempted to understand the
(i) kinds of human capital relevant for such individuals; (ii) likelihood, drivers, and conse-
quences of key team members voluntarily departing during the implementation of a project;
and (iii) use and potential impact of NCAs. In addition, regarding the first two aspects, we
attempted to understand the difference between new technologies and existing technologies.
Below, we briefly discuss of the key findings and include details in Appendices E and F.

Focusing first on the types of human capital required, our theoretical arguments highlight
the importance of on-the-job learning developed through working on projects, especially for
new technologies. In this regard, and most directly, about 41% of respondents rated on-the-job
learning as being more important for new technologies, relative to 25% who rated it as being
more important for existing technologies. In contrast, completing a college degree, a more gen-
eral form of human capital, was viewed as equally important for both technologies.

Turning to the risk of mobility, about 40% of respondents said that in their industry, key
team members quit during a project very often (i.e., in more than 50% of projects) or often (26–
50% of projects). Furthermore, 51% of respondents said that mobility risk was higher for projects
with new technologies (compared with about 17% who said that it was higher for projects with
existing technologies). Together, these support our theoretical arguments about mobility risk
being higher for new technologies.

Consistent with industry-specific human capital being an important driver of mobility risk,
55% of key team members who quit went to a competitor. Symmetrically, the most common
external source for replacing key team members who quit was competitors (26%) (replacements
were most likely to come from within the company (53%)).

Focusing on costs of mobility, 54% said the costs of finding, training, and onboarding a
replacement were higher for new technologies (compared with 20% for existing technologies).
The mean expected time to replace a departing key team member was 5.8 months for new tech-
nology projects (vs. 4.6 months for existing technologies). The mean expected cost increase was
also higher for new technologies (45.5% vs. 38.2%). Together, this evidence supports our thesis
that mobility costs are likely to be higher for new technologies.
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Finally, the survey evidence suggests that NCAs are widely used for key project members
and is consistent with the thesis that NCAs hinder mobility. Then, 57% had signed an NCA and
another 10% stated that they had probably signed an NCA. In addition, 66% of respondents said
that their company requires NCAs for key project members, and a little over 69% said that NCA
use was somewhat common (i.e., 25–50% of people) or very common (i.e., >50% of people) in
their local market. NCAs had made switching jobs difficult for about 6% of respondents and
hindered hiring key team members for about 34% of respondents. Together, the survey evidence
seems broadly consistent with the key assumptions underlying our theoretical arguments.

7 | DISCUSSION AND CONCLUSIONS

In this article, we explore the implications of worker mobility for adoption of a new technology.
We provide a framework to demonstrate how worker mobility can reduce the (net) benefits
from investing in a new technology that requires investments in VSHC (Chari &
Hopenhayn, 1991; Choudhury et al., 2020) and complementary BPI (Brynjolfsson et al., 2019;
Brynjolfsson, Jin, & McElheran, 2021; Tambe, 2014). We then bring this framework to the data
by exploring business adoption of ML, which provides evidence on how worker mobility can
negatively influence the benefits of adopting a new technology. In so doing, we advance under-
standing of the diffusion of new technologies and the value that firms obtain from them
(e.g., McElheran, 2015; Seamans, 2012).

Our research advances recent work that has sought to better understand the factors
influencing the diffusion of artificial intelligence and ML by highlighting a critical role for
worker mobility. Specifically, our study adds to work on the link between the value of ML adop-
tion and human capital (e.g., Alekseeva et al., 2020; Alekseeva et al., 2021; Allen &
Choudhury, 2022; Cao & Iansiti, 2021; Choudhury et al., 2020; Rock, 2021). These studies pro-
vide insights into the complementarities between human capital and ML when human capital
is fixed, or they focus on the implications of ML-related human capital investments. In contrast,
by focusing on the drivers of ML adoption, we explore factors that shape the accumulation of
ML-related human capital, which naturally highlights a role for worker mobility in adoption
decisions.

By focusing on ML and worker mobility, our study is also related to recent research that
examines IT worker skills and has shown the benefits of IT worker mobility for the productivity
of firms (Tambe, 2014; Tambe & Hitt, 2014; Wu et al., 2018). Research in this area has focused
on the potential benefits of inward mobility; our research design takes a contrasting perspective
and measures the net effects of mobility caused by policy changes, thereby providing evidence
that outward mobility can shape decisions to adopt a new technology.

Our research adds to studies that examine the implications of NCA enforceability for firm
outcomes (Conti, 2014; Garmaise, 2011; Jeffers, 2024; Rock, 2021; Starr, 2019) by adding new
technology adoption as a possible firm outcome that may be influenced by NCA enforceability.8

Our results differ from earlier work in the NCA literature that has emphasized the benefits of

8While not a focus of that paper, Rock (2021) does not find evidence that changes to NCA enforceability are associated
with changes in the number or wages of engineering employees. This may be because his firm-level data use the
location of the headquarters to measure the implications of NCA changes. Our focus on establishment-level data and
the characteristics of the location in which the establishment resides allows a more direct measurement between NCA
enforceability and outcomes and allows us to test hypotheses not investigated in prior research.
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weaker NCA enforceability for innovation and local economic growth (Marx et al., 2009), and is
closer to more recent work that has highlighted the potential benefits of stronger NCA enforce-
ability (e.g., Conti, 2014; Kang & Lee, 2022). We conjecture that this difference in results may
arise from our focus on early-stage investments in VSHC (Chari & Hopenhayn, 1991;
Choudhury et al., 2020). Further, our results indirectly suggest that early adopters may have
greater incentives to adopt NCAs for their workers since such adopters are the most affected by
outward worker mobility.

Our research has implications for understanding the relationships between mobility, market
structure, and innovation. Broadly, increases in workforce mobility can help to erode entry bar-
riers that arise with technology leadership and facilitate imitative entry (Agarwal & Gort, 2001).
Within the context of IT investments, recent work has found evidence that such investments
can lead to increases in industry concentration (Autor et al., 2020; Bessen, 2020; Brynjolfsson
et al., 2023), and argued that worker mobility has the potential to weaken the IT-based advan-
tages of dominant firms (Bessen, 2022). Our research suggests that these relationships may
evolve over time when the use of new technology requires VSHC investments (Chari &
Hopenhayn, 1991). During the early stages of technology diffusion, workforce mobility may dis-
suade firms from making investments in innovation that could give rise to technology leader-
ship, and thus in turn potentially slow down imitative entry.

Finally, our approach of measuring ML adoption through ML-enabled business applications
software complements other approaches that use alternative data sources such as job postings
in Burning Glass or information from LinkedIn (Alekseeva et al., 2020; Alekseeva et al., 2021;
Goldfarb et al., 2020; Rock, 2021) or through confidential Census data (Zolas et al., 2020). Given
the continuing policy interest in the diffusion of AI-related technologies among businesses
(e.g., United States Executive Office of the President, 2016), this strategy for measuring ML
adoption across a large sample of establishments is likely to be of independent interest.

7.1 | Limitations

Our results have limitations that suggest avenues for future research. For one, we rely on a
recent literature that has demonstrated how NCA enforceability influences technology and
knowledge worker mobility (Balasubramanian et al., 2022; Jeffers, 2019; Marx et al., 2009).
However, unlike some studies (e.g., Marx et al., 2009), we are unable to measure worker move-
ments. Future research can use information on workers to develop a more fine-grained view of
the impact of outward and inward worker mobility.

Our research seeks to unpack how mobility in complementary human capital inputs shapes
adoption of new technologies such as ML in the short run. Because of the vintage-specific
nature of these investments (Chari & Hopenhayn, 1991; Choudhury et al., 2020), the long-run
implications may be different. With a longer panel, researchers could measure how the dynam-
ics of VSHC shape technology diffusion. For example, as the number of adopters increases, the
need for downstream innovation and the value of the human capital accrued during a new
implementation decrease. Research could examine if the interplay between human capital and
investment in new technologies such as ML is different in the short run than in the long run.
Relatedly, because of data limitations we examine adoption in a single year, 2018. Researchers
can leverage data from the years before and after 2018 to provide a more comprehensive look.

We have studied ML, a particular type of technology where the role of complementary BPI
is very important and the cost of outward mobility is likely high. This is not likely to be true for
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other technologies. While our exploration of the implications of mobility for tablet adoption
represent a first step in this direction, future research can explore the generalizability of our
results by studying how the role of worker mobility might vary in environments where VSHC
and BPI are less important.

It is worthwhile noting issues that we do not address surrounding the interplay between ML
adoption, mobility, and its implications. First, we have viewed ML as an enabler of process
innovation. However, ML can also enable product innovation. That may be affected differently
by worker mobility than process innovation and can be examined. Further, the focus of our
paper is on how changes in worker mobility influence short-run ML adoption decisions, not on
the implications of these decisions for labor demand. As a result, we do not advance recent
work that seeks to examine the labor demand implications of ML investments
(e.g., Brynjolfsson et al., 2018; Felten et al., 2018).

Relatedly, we have also not delved into the performance or welfare implications of ML
adoption. On the one hand, as ML diffuses and becomes more widely available, the associated
increases in productivity (Brynjolfsson, Jin, & McElheran, 2021) and innovation (Babina
et al., 2024) can lead to additional market entry (Bennett & Hall, 2020). On the other hand,
recent research has highlighted some negative consequences for society (e.g., Acemoglu, 2021),
and as an anonymous reviewer noted, slower adoption may allow the development of guardrails
to prevent such consequences. Research can assess such trade-offs associated with faster
adoption.

A critical assumption in our research is that there are no unobserved state-level factors that
are changing in ways correlated with NCA enforceability changes and technology adoption. We
have probed this assumption through the exploration of different controls, subsamples, and
measurement strategies and through falsification exercises. Our results have proven robust
across all these, increasing confidence in the results and in our interpretation. However, we
leave it to other work to further probe the robustness of our findings. For example, additional
work could investigate our hypotheses using different data and measurement strategies for key
constructs such as firm benefits from adoption of ML. A related area of research could be a
deeper investigation of the potential asymmetric effects between increasing NCA enforceability
(that benefits employers) and decreasing enforceability (that benefit employees). We cannot
rule out the null hypothesis of symmetry in our baseline and heterogeneity analyses
(Tables B5–B8). However, this could be a result of limited statistical power, and future studies
can examine this further. In this regard, it may also be useful to incorporate NCA use by firms
into the analyses, as research has shown that the NCA use varies by firm size and industry
(Starr et al., 2021).

In conclusion, our research has taken a first step toward understanding how worker mobil-
ity can depress incentives to invest in a new technology. However, there remain many ways to
build on these results. We invite our readers to do so.
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